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1 Background

Clustering refers to a series of techniques that are used in order to assign unlabeled data
into different groups based on similarities between the data points. It has applications in a
wide variety of fields, playing a large role in particular in the field of unsupervised machine
learning. Spectral clustering is a form of clustering that relies on the use of eigenvalues
and eigenvectors in order to reduce the dimensions of the data, so that standard clustering
algorithms can then be applied. In this project, we implement the spectral clustering al-
gorithm, first performing it on a dummy dataset, before catering our algorithm to analyze
music genres.

1.1 Similiarity Graphs and Matrices

Given a set of n data points, one method of representation of those points is in the form of
a graph. A graph is a data type that consists of vertices and edges between the vertices.
Because clustering is mainly concerned with grouping similar data points, we use the data
to construct a similarity graph, which is represented as the n× n A where Aij = 1, i ̸= j if
there is some degree of similarity between the ith data point and the jth data point. More
specifically, the matrix A is an adjacency matrix representation of our similarity graph where

Aij =

{
1 if there is an edge between data point i and j

0 otherwise

The existence of an edge between data point i and j indicates that a certain degree of sim-
ilarity between the two points are met. For weighted graphs, 1 would be replaced with the
weight of the edge. Note that our similarity graph is undirected, which implies that Aij = Aji

and we have no self edges, so Aii = 0.

Similarity graphs can be derived in many ways. For the purposes of this project, we use the
k-nearest neighbors search technique. The way that this technique works is that for each
data point, its k-nearest neighbors are found (determined based on Euclidean distance),
where k is specified by the user. An edge is then drawn from that data point to each of its k
neighbors to create our similarity graph, which we represent in our adjacency matrix format
as demonstrated above.
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In addition to our adjacency matrix, we also have a matrix D called the degree matrix.
Assuming we have n data points, this is the diagonal matrix

D =


d1

d2
. . .

dn


where Dii = di, in which di represents the degree of the ith data point. The degree of a data
point of a vertex is defined to be the number of edges that are connected to it.

1.2 Graph Laplacian Matrix

Now that we have some form of representation for our data, we can use the adjacency and
diagonal matrices we have described to construct the graph Laplacian matrix. The graph
Laplacian matrix is another way to represent a graph and it is defined as follows:

L = D − A

where D and A are the degree and adjacency graphs of a set of data points.

The Laplacian has several properties, which are outlined below [2]:

1. For every x⃗ ∈ Rn,

x⃗TLx⃗ =
1

2

n∑
i,j=1

aij(xi − xj)
2

We prove this as follows,

x⃗TLx⃗ = x⃗T (D − A)x⃗

= x⃗TDx⃗− x⃗TAx⃗

=
n∑

i=1

dix
2
i −

n∑
i,j=1

xiaijxj

=
1

2

(
2

n∑
i=1

dix
2
i − 2

n∑
i,j=1

xiaijxj

)

=
1

2

(
n∑

i=1

dix
2
i − 2

n∑
i,j=1

xiaijxj +
n∑

j=1

djx
2
j

)

=
1

2

n∑
i,j=1

aij(xi − xj)
2

2. L has n real, non-negative eigenvalues and orthogonal eigenvectors

D and A are symmetric, which implies that L is also symmetric, so the properties
outlined are derived from the spectral theorem.
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3. L is positive semi-definite with smallest eigenvector 0.

We know that L is symmetric and from part 1, we note that (xi − xj)
2 ≥ 0 and and

that aij ≥ 0 from our adjacency matrix representation, so x⃗TLx⃗ ≥ 0, proving that L is
positive semi-definite, which means that all n eigenvectors are ≥ 0.

Using these properties, we can then state the following about L. We can prove that the
multiplicity m of the eigenvalue 0 for L corresponds to the number of connected components
for the graph that L represents. A connected component refers to a set of vertices that are
connected by path. In other words, for any two vertices that are contained in the same
connected component, there exists a path between those vertices. A more detailed proof
is outlined in [2], but the general gist is that if we assume that x⃗ is an eigenvector for L
with eigenvalue 0, then we can use the equation in part 1 to derive that if two vertices are
connected then xi = xj, which means that all vertices within the same connected component
must have the same eigenvector x⃗. So, if there are m eigenvectors, there are m connected
components

Then, for each eigenvalue close to zero, it follows that the data is close to having an additional
connected component. So, when determining the number of clusters, the standard is to look
for the first large gap between eigenvalues and cluster into k groups where k is the number
of eigenvalues before the first gap.

1.3 K-Means

Once we have determined what our k value is, we take the first k eigenvectors x⃗1, · · · , x⃗k

and put them in a matrix, which we will call E, as follows,

E =
(
x⃗1| · · · |x⃗k

)
Then, we perform standard clustering algorithms on the rows of E. The reason why we take
the first k eigenvectors is because it helps to reduce data that has many dimensions to a
lower k-dimensional space, so that clustering is easier.

The clustering algorithm that we primarily use in this project is the k-means clustering
algorithm. The way the algorithm works is that in order to sort n data points into k
groups, it will arbitrarily choose k random data points to act as clustering centroid. Then,
it will iterate through all n data points many times and assign each to the nearest clustering
centroid. As the algorithm is iterating, the centroid will readjust its position to the one that
is the average of all the points that have been assigned to it. The algorithm continues to
iterate through all the points until the centroids reached a fixed state, which indicates that
the point assignments have also become fixed.

2 Methods

2.1 Algorithms and Computation

In this section, we translate the theoretical ideas we discussed in the previous section into
code format. We present a more generalized code version that can be adapted to analyze
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different datasets. Some of the code has been adapted to pseudocode for easier understand-
ing. For the full code, refer to the appendix.

Assume we start off with n data points in Rm and assume we have put them in an m × n
matrix called data. The first step is to create our similarity matrix through the use of k-
nearest neighbors. As a quick note, the k-nearest neighbors function in Julia uses a tree of
the points as well as the matrix of the points in order to perform the data search. We chose
to use a kd tree as our representation because the NearestNeighbors package documentation
specified that it works well with axis aligned metrics like Euclidean distance. The kd tree
works by recursively splitting the points into groups. Also note that we used numNeighbors
+ 1 instead of numNeighbors for the knn function since for each node, the function also
outputs the current node itself as a closest neighbor. Our code is presented as follows,

kdtrees = KDTrees(data)

# idx is a vector where the ith component is a vector for neighbors of

# data point i

idx, dists = knn(kdtree, data, numNeighbors + 1)

neighbors = (matrix representation of idx, self-neighbors are excluded)

Now that we have our neighbors, we can begin to construct our adjacency and diagonal
matrices. For our adjacency matrix, we start off with a n × n matrix of zeroes and loop
through the neighbors, updating the matrix with 1s for each neighboring pair.

adj = zeros(n, n)

for i in 1:n

for j in 1:numNeighbors

adj[i, neighbors[i, j]] = 1

adj[neighbors[i, j], i] = 1

end

end

For our diagonal matrix, we start off with a n × n matrix of zeros and set each diagonal
entry to be the sum of the corresponding row of the adjacency matrix, since we represent
edges with 1s.

degree = zeros(n, n)

for i in 1:n

degree[i, i] = sum(adj[i,:])

end

Now, we have our Laplacian matrix.

laplacian = degree - adj

Then, we find the eigenvectors and eigenvalues of the matrix. Based off analysis of the
eigenvalues, we can then specify the number of clusters we want and construct a matrix
using that number of eigenvectors to perform k-means on the rows of A.

eigenval, eigenvec = eigen(laplacian)

A = eigenvec[:,1:numClusters]

km = kmeans(transpose(A), numClusters)
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And we’re done. Information about the cluster each point is assigned to is stored in
km.assignments. For visualization purposes, the data can be represented in scatter plot
form with data point coloring based off of the cluster assignments in km.assignments.

2.2 Coding and Algorithm Design Decisions

Here, we will discuss the following design decisions:

1. Similarity graph choice

2. Clustering algorithm choice

2.2.1 Similarity Graph Choice

For our similarity graph, we chose to use the k-nearest neighbors technique to construct the
edges of our graph, which was detailed earlier. We chose to use the knn technique because
of its simplicity, since the technique primarily relies on distances (in our case, Euclidean
distances) to perform the search. The simplicity of knn also means that it can be used on
many different types of data, since the data does not need to meet any starting assumptions
in order to work. This works well when we want to find patterns in data that we don’t know
much about. Finally, the knn technique does not require any training period, which means
that new data can be added or old data can be removed easily and the model can quickly
adapt to each dataset.[5]

2.2.2 Clustering Algorithm Choice

There are many different clustering algorithms that can be used to group datasets. For this
project, we chose to use the k-means clustering algorithm. Like the knn search technique,
one of the advantages of the algorithm is its simplicity, both in its implementation as well
as its ease of understanding. In addition, the k-means algorithm is a widely used clustering
algorithm that works well with large datasets. Finally, the algorithm will always guarantee
convergence, which refers to successful clustering of the data, making it adaptable to many
different datasets. [6]

3 Experimentation

3.1 Datasets

We evaluated our model on two different datasets of various sizes. All of the samples and
features were numerically represented.

The first dataset was a dummy dataset consisting of 100 randomly generated 2D data points
in two clusters. This was used as proof of concept to ensure no major systematic error exists
in our method. We generated these data points using Julia’s MLJ and DataFrames package.
We specified the number of neighbors in the KNN algorithm to be 10, which means that
each data point will be connected to the 10 closest neighbors in our graph.

The second dataset was a subset of the GTZAN Music Genre Classification Dataset consist-
ing of 1000 samples of various music belonging to 10 categories across 198 feature dimensions.
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Each feature encoded a musical characteristic such as “tempo”, “chroma stft”, and “har-
mony mean”. The goal was to evaluate our model’s ability to cluster music by genre given
these 198 characteristics in an unsupervised setting.

3.2 Data Preparation

Before applying our model to these datasets, we noted that certain values ranged numerically
by a substantial amount depending on the feature dimension in the second and third datasets.
And since an algorithm like K-means is sensitive to variances in input data, we applied a
Z-Score Transformation to standardize the data points using the ZScoreTransform package
provided by Julia in order to prevent the clustering dominated by features with a bigger
scale. This normalization transformed our data points into corresponding standard scores
by subtracting each value from the mean and scaling to the unit variance zscoretransform.
We also explored other normalization methods such as a Unit Range Transform unit range,
but Z-Score Transformation yielded more consistent clustering results.

4 Results

We present the following results of our experiment on all two datasets.

4.1 Dummy Dataset

4.1.1 Clustering

Plots of randomly generated 2-dimensional data points belonging to two clusters from before
and after clustering are shown in Figures 1 and 2.

We also evaluated our model on randomly generated data clearly belonging to four clusters.
Plots of the 2-dimensional data points from before and after clustering are shown in Figures
3 and 4.

As can be seen, our model competently clusters the data points into two and four corre-
sponding clusters.

4.1.2 Eigenvalues of the Laplacian Matrix

We computed the eigenvalues and eigenvectors of the Laplacian matrix for the set of points
generated for both two clusters and four clusters to verify our choice of k for the K-means
algorithm. Figures 5, 6 illustrate plots of the first 15 eigenvalues.

For the 2-cluster plot, the first two eigenvalues are observed to be close to zero before the
third eigenvalue spikes to around 4. According to the previously discussed theory, this im-
plies that there are likely two connected components in the Laplacian graph. Since the
ground truth number of clusters in the plot is indeed two, we can confirm that the value of
k should indeed be two.
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Figure 1: Visualization of 2-cluster 2D data points before clustering

Figure 2: Visualization of 2-cluster 2D data points after clustering
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Figure 3: Visualization of 4-cluster 2D data points before clustering

Figure 4: Visualization of 4-cluster 2D data points after clustering
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Figure 5: Visualization of eigenvalues for 2 clusters

Figure 6: Visualization of eigenvalues for 4 clusters
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We observed similar results for the 4-cluster plot, the first four eigenvalues are observed to
be close to zero before the third eigenvalue spikes to around 4. This implies that there are
likely four connected components in the Laplacian graph. Since the ground truth number of
clusters in the plot is indeed four, we can confirm that the value of k should indeed be two.
The observed results from both the 2-cluster and 4-cluster trials agree with our theoretical
predictions.

4.2 Music Genre Classification Dataset

4.2.1 Clustering

Plots of the clustering results on the first dimension (tempo) of the music vs. the 31st dimen-
sion (roll-off mean) for all 1000 samples are shown in Figures 7 and 8. Figure 7 illustrates
the clustering of the data with respect to the original scale while Figure 8 illustrates the
clustering of the same data points with respect to the normalized scale based on the z-score
of each point. Note that in music, the rolloff frequency denotes the approximate low bass
and high treble limits in a frequency response curve. Higher rolloff frequencies are typically
more prominent in types of music that involve distortion such rock and hip-hop, as opposed
to jazz, blues, and classical music.

In each plot, the color of the clusters corresponds to the category it is clustered into based
on a rainbow scale representing categories 1-10. The relatively clear clustering of the data
points in both clusters demonstrates that there is a distinct correlation between the type of
music, its tempo, and the rolloff frequency. In Figure 7, we note that the light blue cluster
located near the top of the plot corresponds to the category of ”metal music” in our dataset.
This indicates that our model is able to recognize that metal music generally tends to have
higher mean roll-off frequencies. On the other hand, the dark green and dark blue cluster
towards the bottom of the plot correspond to categories of ”blues” and ”country” music,
both of which are music genres that involve lower rolloff frequencies.
It is also interesting to note that the tempo consistently varies among all ten categories of mu-
sic. This is expected since in each of the ten music genres, music could be both fast and slow.

Figure 9 illustrates a plot of the tempo vs chroma feature in the music and provides a view of
the clustering from another dimension. In a musical context, chroma-based features indicate
the energy distribution among the twelve chromas to determine the harmonic progression
of the underlying piece. This plot contains a clustering of categories that could clearly be
distinguishable yet contain overlaps. This observation is expected since music from certain
categories such as pop, classical, country often have the same if not similar progressions, yet
music from other genres such as jazz has unique chord progressions and scales.

4.2.2 Eigenvalues of the Laplacian Matrix

We, again computed the eigenvalues and eigenvectors of the Laplacian matrix for the set
of 1000 music data points to verify our choice of k for the K-means algorithm. Figure 10
illustrate plots of the first 15 eigenvalues.

In Figure 10, we observe that the first eigenvalue is the only eigenvalue that is very close to
being 0. This indicates that there is only one connected component in the Laplacian graph.
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Figure 7: Tempo vs. Rolloff mean clustering of dataset 2 based on original scaling

Figure 8: Tempo vs. Rolloff mean clustering of dataset 2 based on normalized scaling
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Figure 9: Tempo vs. chroma stft mean clustering of dataset 2 based on normalized scaling

Figure 10: Visualization of eigenvalues for Music Genre Classification Dataset
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After the first eigenvalue, the other eigenvalues gradually begin to increase but don’t spike
until the ten and the eleventh eigenvalue with a value of around 1.7. Since the ground truth
number of clusters/categories of musical genres in this dataset is 10, it is very reasonable for
the chosen value k to be 10.
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6 Appendix

Full source code: https://github.com/emilyjiayaoli/spectral-clustering-project

Julia code for dummy dataset:

numNeighbors = 10

numPoints = 100

numClusters = 4

# Randomly generates clustered dataset

using MLJ, DataFrames

X, y = make_blobs(numPoints, numClusters; centers=2, cluster_std=[1.0, 3.0])

dfBlobs = DataFrame(X)

# Extracts data from the dataframe

data = dfBlobs[:,1:2]

x1 = dfBlobs[:,1]

x2 = dfBlobs[:,2]

# Plots the randomly generated data

using Plots

scatter(x1, x2, xlims=(-15,15), ylims=(-15,15), aspect_ratio=:equal)

using LinearAlgebra

data = transpose([x1 x2])

# Performs knn search and puts neighbors into a matrix

using NearestNeighbors

kdtree = KDTree(data)

idx, dists = knn(kdtree, data, numNeighbors + 1, true)

idxMatrix = mapreduce(permutedims, vcat, idx)

neighbors = idxMatrix[:,2:numNeighbors + 1]

# Calculates adjacency matrix

adj = zeros(numPoints, numPoints)

for i in 1:numPoints

for j in 1:numNeighbors

adj[i, neighbors[i, j]] = 1

adj[neighbors[i, j], i] = 1

end

end

# Calculates degree matrix

degree = zeros(numPoints, numPoints)

for i in 1:numPoints
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degree[i, i] = sum(adj[i,:])

end

laplacian = degree - adj

# Extracts first the first k (numClusters) eigenvectors

eigenval, eigenvec = eigen(laplacian)

A = eigenvec[:,1:numClusters]

# Performs kmeans and plots data again, coloring based on cluster assignment

using RDatasets, Clustering

km = kmeans(transpose(A), numClusters)

scatter(x1, x2, marker_z=km.assignments, color=:rainbow, legend=false)

Julia code for dataset 2:

import Pkg

Pkg.add("DelimitedFiles")

Pkg.add("StatsBase")

# Loading Data

using DelimitedFiles

filepath = "./music_genre_data.csv"

data = readdlm(filepath, ',')

#/Users/emily/Desktop/21-241\ Linear/

# Data Info: 1000 data points, 199 dimensions of features

# removed the tile rows and columns, turn into float

data_num = Float64.(data[2:1000,2:198])

# Applied normalization

using StatsBase

using Random

#standardizing accross the columns, so dims=2

X_standard = standardize(ZScoreTransform, data_num, dims=2)

# First parameter options: UnitRangeTransform, ZScoreTransform

X_transposed = transpose(X_standard) # rows are dimensions, columns are datapoints

# X = X_transposed[:, shuffle(1:999)]

X = X_transposed[:, 1:999]

numNeighbors = 15

numPoints = 999
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#numClusters = 10 # value based on the first gap in eigenvalues

using DataFrames

using NearestNeighbors

kdtree = KDTree(X)

idx, dists = knn(kdtree, X, numNeighbors + 1, true)

# Turns vector within vector into matrix

idxMatrix = mapreduce(permutedims, vcat, idx)

# Adjancency list (list of indexes for k nearest neighbors at each index):

neighbors = idxMatrix[:,2:numNeighbors + 1]

# Creating adjancency matrix

adj = zeros(numPoints, numPoints)

for i in 1:numPoints

for j in 1:numNeighbors

adj[i, neighbors[i, j]] = 1

adj[neighbors[i, j], i] = 1

end

end

degree = zeros(numPoints, numPoints)

for i in 1:numPoints

degree[i, i] = sum(adj[i,:])

end

laplacian = degree - adj

using LinearAlgebra

eigenval, eigenvec = eigen(laplacian)

scatter(collect(1:999), eigenval,

xlim=(0, 15), ylim=(0,2.5),

xlabel="count", ylabel="eigenvalue",

title="\n Dataset #2 - Eigenvalues for Laplacian Matrix",

titlefont=font(12),

bottom_margin = 10mm, top_margin = 5mm,
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left_margin = 10mm, right_margin = 10mm)

# Specify number of clusters

numClusters = 10

# Retrieve specified amount of eigenvectors

A = eigenvec[:,2:numClusters + 1]

# Perform k means

using RDatasets, Clustering

km = kmeans(transpose(A), numClusters)

# Plotting results.

using Plots

using Plots.PlotMeasures

s = 2.5

scatter(X[1, :], X[31, :],

marker_z=km.assignments,

color=:lightrainbow,

legend=false, markersize=s)

s = 4

scatter(X[1, :], X[31, :],

marker_z=km.assignments,

color=:lightrainbow,

legend=true, markersize=s,

xlabel="tempo (dim 1)",

ylabel="rolloff_mean (dim 31)",

title="\n Tempo vs Rolloff Mean (original scale)" ,

titlefont=font(12),

bottom_margin = 10mm,

top_margin = 5mm,

left_margin = 10mm,

right_margin = 10mm)

# Access results, clusters to verify and interpret clustering results

@assert nclusters(km) == numClusters # verify the number of clusters

a = assignments(km) # get the assignments of points to clusters

c = counts(km) # get the cluster sizes

M = km.centers # get the cluster centers
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